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Abstract:  

The utilization of a fragility curve (FC) can provide a more precise estimation of a structural system's 
performance level when exposed to seismic hazards. However, selecting an inappropriate FC can significantly 
affect the accuracy of loss and damage calculations in seismic risk assessments.  
This article uses a new method to select fragility curves that are better suited to the most prevalent typologies 
in Central America (CA). To this end, a wide bibliographic search of different vulnerability and seismic risk 
studies for the Central American region has been conducted. A database was constructed with the parameters 
of the capacity and FCs available for diverse construction typologies. The novel methodology enables the 
classification of the FCs based on a multidimensional index that takes into account a collection of pertinent 
variables related to different characteristics of FCs. These variables are arranged into three major dimensions 
related to technical suitability of the FC, the suitability for the local system of the potential FCs candidates and 
the similarity between the building class of the candidate functions and the building class under study. 
Additionally, a calibration and validation process on the variable scores of the multidimensional index proposed 
in the new methodology for evaluating and choosing FCs is conducted. The calibration process involves a 
survey of seismic vulnerability experts worldwide within the field of seismic risk studies. The fuzzy analytic 
hierarchy process (FAHP) method for multicriteria decision-making (MCDM) is employed to calculate the fuzzy 
scores or weights based on the experts' survey responses, leading to more objective and dependable scores 
compared to expert weights.  
Consequently, the proposed ranking system derived from the new methodology has enabled the identification 
of the most suitable FCs for the primary construction types in CA. The suggested approach allows for the 
evaluation of the reliability level of FCs, which is contingent on the curve's class assignment and corresponding 
score. Additionally, the findings derived from the newly developed multidimensional index facilitate the 
assessment of the appropriateness of the selected FC, a crucial consideration for researchers investigating 
seismic vulnerability and risk. 
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1. Introduction 

The reliability of a risk assessment procedure is strictly dependent on the adopted hazard, exposure, fragility, 

and consequence models (Graziotti et al., 2018). Therefore, when conducting seismic risk studies, there is a 

challenge in dealing with a multitude of uncertainties, especially in the methods used to assess them. For 

instance, one critical aspect is the choice of fragility curves (FC). FCs have evolved into a crucial instrument 

for seismic risk assessments and vulnerability analyses. They enable a connection between the seismic hazard 

present at a specific location and the impact of ground motion on constructed infrastructure. It is important to 

note that selecting the wrong FC can lead to highly unreliable estimates of damages and losses. Different 

types of buildings and structures can behave differently during an earthquake due to variations in construction 

materials, design, and level of maintenance of the building. Using an inadequately chosen FC may lead to 

inaccurate estimations of the vulnerability of these structures. This can result in an unreliable assessment of 

potential damages and losses. By accurately selecting FCs tailored to specific typologies, resources for 

mitigation efforts, such as retrofitting or reinforcement, can be allocated more efficiently. If the curves are not 

appropriately chosen, resources may be misallocated, leading to ineffective or inefficient risk reduction 

measures. Furthermore, different typologies of buildings may have varying levels of importance in terms of 

safety and economic impact. Adequate selection of FCs allows for the prioritization of structures that are more 

critical or have a higher risk. This ensures that efforts are directed towards mitigating the most significant risks 

first. Government authorities and policymakers often rely on seismic risk studies to develop and enforce 

building codes, zoning regulations, and disaster management plans. Therefore, accurate FC selection is 

essential for informing these decisions to enhance public safety and reduce potential losses in the event of an 

earthquake. Also, adequate FC selection is also critical for the insurance industry and financial institutions. It 

helps them assess and price earthquake insurance policies accurately, as well as estimate potential financial 

losses and liabilities. And, finally, understanding the vulnerabilities of different building typologies through 

appropriate fragility curve selection can aid in community preparedness and public awareness efforts, helping 

people understand the risks associated with their specific types of structures.  

Unfortunately, many of the FCs commonly used in seismic risk studies for specific areas, such as Central 

America, were designed for regions with very different construction techniques and materials quality compared 

to the areas being studied, such as North America, Italy, or other countries with higher GDP and more research 

investment (Navas-Sánchez et al., 2023). Central America stands out as one of the world's regions facing the 

most significant seismic hazard. Additionally, this area is marked by substantial physical and social 

vulnerabilities. It is precisely the unfortunate combination of these two adverse factors that has resulted in a 

remarkably high number of casualties and economic losses in the past during seismic events.  

Within this context, it is crucial to have some methodological approach for evaluating and selecting FC for 

seismic risk studies. Navas-Sánchez et al. (2023) propose an approach examining a catalog of existing 

proposals found in the literature that provides ranges and rankings to assess the suitability of a particular curve 

for a given area from a multidimensional index composed of a set of different variables. Whereas, on its part, 

the present paper calibrates and validates the scores assigned to the variables established in said previous 

methodology (Navas-Sánchez et al., 2023) for assessing and selecting fragility curves for seismic risk studies. 

Said calibration process is based on survey research to worldwide experts in seismic vulnerability within the 

context of seismic risk studies. Furthermore, the results are implemented in the “select.FC” methodology and 

validated using the fuzzy set methods application. In addition, a comprehensive database of FCs with the 

variables involved in the method already assessed is provided in order to render as easy as possible to 

researchers the selection of the most appropriate FC for a region. 

Several studies have explored the impact of weights on composite indices, raising concerns about the reliability 

and credibility of the findings. Notable works by Permanyer (2012), B. Zheng and C. Zheng (2015), Becker et 

al. (2017), Seth and McGillivray (2018), and others have highlighted these issues. Consequently, numerous 

innovative approaches to address this weighting challenge were developed and used. One such approach 

involves combining expert opinions with the FAHP (Fuzzy Analytic Hierarchy Process) method, as exemplified 

by the work of Gopal and Akkar (2015), Kashani et al. (2020), Bisht et al. (2022), and similar studies. So, to 

overlook the uncertainty and inconsistency inherent in expert responses, and to assess their validity and 

reliability, and accommodate indices with a substantial number of proxies, we implement the FAHP method 

following the adaptation proposed by Al Fozaie and Wahid (2022) . 
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2. Methodology 

2.1 The “select.FC” methodology to assess and select seismic fragility curves for seismic risk 

studies 

The methodology to assess and select seismic fragility curves comprises the following procedural steps as 

proposed in a previous paper (Navas-Sánchez et al., 2023). To begin, it is essential to identify and characterize 

the typologies of buildings under examination. Next, an extensive search through available scientific literature 

is conducted, encompassing research projects, scientific articles, graduate and post-graduate theses, 

conference papers, and related sources. This search primarily focuses on sources that pertain to the 

characterization of buildings relevant to the specific area under analysis. 

Subsequently, a rating index is derived from a proposed set of variables designed to assess pertinent aspects 

of the identified FCs considered as potential candidates for the studied typology. The Figure 1 from Navas-

Sánchez et al. (2023) summarizes the conceptualization, dimensions and variables of the index proposed to 

evaluate FCs indicating in brackets the maximum scores of each one.  Using this index, a classification is 

formulated to determine the suitability of the FCs for each identified building type. The Final Index, with a 

maximum score of 100 points, is computed based on a multidimensional index known as the Global Index. 

The Global Index is adjusted by a reduction coefficient that indicates how well the curve suits a particular 

building type within the region under study, referred as Building Class Similarity dimension. The quantity and 

nature of attributes between the two building types are taken into account to gauge the resemblance between 

the building classes of the candidate functions and the one for which its utilization is being assessed. In 

particular, the lateral load-resisting system, number of stories, ductility, year of construction, and compliance 

with seismic rules are the fundamental characteristics and those that might be seen as more significant in light 

of the analyzed typology's seismic susceptibility. The FC must match a typology of the same material as the 

one being investigated.  

 

 

Figure 1. Dimensions and variables of the index proposed to evaluate FCs. Source: Navas-Sánchez et al. 
(2023).  

The Global Index comprises two primary dimensions: the Technical Suitability of the FC, which encompasses 

three sub-dimensions (Capacity, Fragility, and Quality), and the Suitability for the Local System. Furthermore, 

each of these dimensions and sub-dimensions includes a set of variables that enable the evaluation of diverse 
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aspects related to the FCs. These variables were selected following previous studies about the subject (Stone 

et al, 2017; Maio and Tsionis, 2015; Rossetto et al., 2014). The capacity curve's sub-dimension includes 

variables related with the method and model, analysis type and the engineering demand parameter (EDP) 

considered to build the curve. The fragility curve's sub-dimension refers to characteristics directly related to 

the FCs evaluated, such as the intensity measure (IM) used, the year of publication of the curve, the treatment 

given to the different sources of uncertainties associated with FCs and the damage threshold considered. The 

quality sub-dimension comprises a combined variable to assess whether the capacity and fragility curves 

originate from existing structures or building prototypes and considers the size of the building sample 

employed. This sub-dimension also includes variables related to the authenticity and credibility of the study, 

considering the type of publication where the examined FC is proposed (scientific article, doctoral thesis, 

conference paper, among others). The last variable in this block is the popularity of the FCs, that is, the level 

of diffusion and use measured from the number of citations in Google Scholar of the study that proposes the 

curve. Furthermore, according to the following variables: similarity in construction methods and IM similarity, 

the suitability for the local system dimension tries to evaluate the degree to which the FCs evaluated for the 

typologies analyzed are adequate for the study to be conducted.  

 

2.2. Expert survey  

From a survey online in Spanish and English, expert opinion was collected on the weights or relative 

importance of each variable, subdimensions, and dimensions included in the multidimensional index previously 

described to rate FCs. The survey has a total of 18 questions. The first block of questions asks the expert to 

assign a score on a scale of 1 to 9 to each of the twelve variables included in the global index (Figure 2). In 

another block of questions, the experts are required to compare pairs of different dimensions of the index to 

collect the relative importance that they assign to each one in comparison with the rest. Lastly, two more 

questions were also included that asked the experts to assign a value from 0 to 100 to the different dimensions 

and some relevant variables to evaluate the robustness and consistency of their responses to the first two 

blocks. In each question, the experts were given the option of adding comments. 

 

 

Figure 2. Survey scale and sample response 

A total of 30 experts were identified based on their level of expertise on the subject. These experts have, in 

general, a high level of specialization reflecting in their research activity with high-quality scientific publications 

or in their professional activity. They were contacted via email and given a cover letter outlining the goal of the 

survey and the study it relates to. To date, 28 responses have been received, with a total of response rate of 

93%. The experts who completed the survey are from different countries: Spain, Italy, Portugal, USA, Peru, 

Ecuador, Colombia, Guatemala, El Salvador, and Costa Rica. 
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2.3. Fuzzy hierarchical analysis 

The multidimensional index proposed in Navas-Sánchez et al. (2023) is constructed from a set of scores 

assigned to each of the variables, sub-dimensions, and dimensions based on the criteria of the experts of the 

research group in which it was developed. However, the process of assigning weights to the different variables 

of a multidimensional index, such as the one proposed, is not trivial and is part of the most crucial step in the 

construction of a composite index, which is the aggregation of the different variables and dimensions into a 

single indicator. Therefore, as mentioned before, in the second stage of the research, it was considered 

appropriate to validate the weights assigned based on a survey carried out with a large panel of experts on 

the subject. However, the experts' responses are also limited, subject to significant subjectivity, uncertainty, 

and possible inconsistencies (Al Fozaie and Wahid, 2022). Hence, to address the limitations of the weighting 

system emerging from an expert survey, the fuzzy analytical hierarchy process (FAHP) method is 

implemented.  

FAHP combines for one side, fuzzy set theory and, for another, analytic hierarchy process. Zadeh (1965) was 

the first to establish fuzzy set theory, which was focused on the rationality of uncertainty caused by imprecision 

or vagueness to address the vagueness of the human mind. The ability of fuzzy set theory to represent 

ambiguous data is one of its significant contributions. Additionally, the theory permits the application of 

mathematical operations and programming to the fuzzy domain. A class of objects with a range of membership 

grades is called a fuzzy set. A membership (characteristic) function that awards each object a membership 

grade ranging from zero to one defines such a set (Ataei et al., 2012). Fuzzy sets and fuzzy logic are effective 

mathematical tools for modeling uncertain systems. They also make making decisions easier when there is a 

need for more comprehensive and accurate information. Their role is essential when applied to complicated 

processes that are difficult to describe using conventional mathematical techniques, especially when the 

objective is to develop a good approximation. Fuzzy Set theory is a better method for simulating uncertainty 

resulting from mental events that are either random or chaotic. Instead of using purely objective probability 

measures, a logical approach to decision-making should consider human subjectivity, and for this, fuzzy 

numbers could be of great assistance. In this research we use triangular fuzzy numbers to deal with the 

uncertainty of expert responses to assign weights to each variable of the global index. A triangular fuzzy 

number is denoted simply as (l, m, u) or (l|m, m|u). The parameters l, m, and u, respectively, denote the 

smallest possible value, the most promising value and the largest possible value that describe a fuzzy event 

or object. The Figure 3 represents a triangular fuzzy number (Ataei et al., 2012). 

 

 

Figure 3. Triangular fuzzy number. Source: Ataei et al. (2012) 

The analytical hierarchy process (AHP), initially developed by Saaty (1980), is a method that works well for 

dealing with complicated systems, including choosing among numerous options. It compares the options that 

have been taken into consideration. The AHP is based on a hierarchical split of the problem into its parts; the 

analysis then assists the decision-makers who, through pairwise comparisons, can understand the influence 

of the considered elements in the hierarchical structure. Among the different applications the AHP can have is 

weight criteria or variables according to paired comparisons.  

In this research, the Fuzzy AHP method highlights the most prominent variables used in constructing the 

indices and assigns them the highest weight. By integrating expert responses and the FAHP method, it is 

possible to improve the objectivity of the weights and reduce the uncertainty of the expert responses (Al Fozaie 

et al., 2022). To be more specific, there is a great deal of uncertainty when combining expert opinion on a 

particular variable and turning it into a single value. This uncertainty may be due to a lack of understanding of 
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the task, expert bias, the experts' disinterest in the survey, or just plain human error, all of which could produce 

unreliable results. Furthermore, FAHP is more appropriate in situations where there is a likelihood of ambiguity 

and fuzzy results, whereas AHP is more appropriate in judgments that are more easy or crisp. As a result, and 

because of the research gaps, the FAHP technique is more appropriate than the AHP method when gathering 

opinions from experts to create composite indexes (Al Fozaie et al., 2022). Furthermore, there are different 

variants of the FAHP method as those of van Laarhoven and Pedrycz (1983), Buckley (1985), and Chang 

(1996). Compared to others, the Buckley (1985)’s geomean method for calculating the fuzzy weights is easy 

to compute and guarantees a unique solution (Emrouznejad and Ho, 2017; Al Fozaie et al., 2012), then this is 

the FAHP method implemented in this research.  

As previously mentioned, in this research, the FAHP method is implemented following the suggestions and 

adaptation proposed by Al Fozaie and Wahid (2022). The authors provide a guide on improving the expert 

weights by subjecting them to the FAHP method to compute fuzzy weights and interval weights, calculated by 

finding the midpoint between the expert weights and the fuzzy weight. The first step, once the expert responses 

are collected, is to analyze and normalize into weights the points assigned for the experts to the different 

variables of the Global Index. The second step is to categorize the expert weights into percentiles so that they 

can be transformed into triangular fuzzy numbers (see table 1). The third step of the FAHP method involves 

the fuzzification process developing the fuzzy pairwise comparison matrix (FPCM). For this, from the fuzzy 

values by percentil and the fuzzy scale for relative importance the distance the variable is from the ideal scale 

(9, 9, 9), that is, the steps to ideal (STI) scale is computed. 

 

 Table 1. Fuzzy values by percentile and fuzzy scale of relative importance 

Percentile Fuzzy number Relative importance 
0-20 (1, 1, 1) Equal importance 

21-40 (2, 3, 4) Weak importance 

41-60 (4, 5, 6) Fair importance 
61-80 (6, 7, 8) Strong importance 

80-100 (9, 9, 9) Absolute importance 
 

Then, the difference in the STI scale between each pair of variables facilitates the assignment of a triangular 

fuzzy scale to each pairwise comparison as shown in Table 2.   

 

Table 2: Steps to ideal (STI) scale and the corresponding triangular fuzzy scale by cases 

Cases STI  Fuzzy scale 

Variable is within 0 categories from the other  0 (1, 1, 1) 

Variable is within 1 category from the other 1 (2, 3, 4) 

Variable is within 2 categories from the other 2 (4, 5, 6) 

Variable is within 3 categories from the other 3 (6, 7, 8) 

Variable is within 4 categories from the other  4 (9, 9, 9) 

 

The fourth step is to apply Bucley’s geomean method to calculate the fuzzy weights. For this, the geometric 

mean of each value of the triangular fuzzy scale of each column is computed, that is, 𝑟𝑖 = (𝑎𝑖1 × 𝑎𝑖2 ×. . .× 𝑎𝑖𝑛)𝑛 

where 𝑎𝑖𝑗 represents each one of the integers corresponding to the triangular fuzzy number of variable i and 

n is the number of variables. Then to calculate the fuzzy weights 𝑤𝑖, the sum of each one of the three column 

𝑟𝑖 and then multiply the inverse of this sum, i. e., with the corresponding value in column, i.e., 𝐹𝑢𝑧𝑧𝑦 𝑤𝑖 =

(∑ 𝑟𝑖𝑗
𝑛
𝑗 )−1 × 𝑟𝑖𝑗. This computation obtains three columns with the corresponding fuzzy weights of each 

variable's triangular fuzzy sets. The sixth step is to defuzzy or normalize the weights, calculating the average 

of the fuzzy weights for each variable, i. E., defuzzified 𝑤𝑖 = (𝑤1 + 𝑤2 + 𝑤3)/n. The pairwise comparison has 

both advantages and disadvantages since, despite giving the most significant variables higher weights, it runs 

the risk of exaggerating their importance as well as diminishing the influence of lesser-weighted variables. Due 

to the severely imbalanced variable weights, this can consequently considerably affect the final index. So, Al 
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Fozaie and Wahid (2022) introduce interval weights—the midpoint between fuzzy and expert weights—to 

address this problem.  

3. Results  

3.1. Improved weights for the Global Index integrating expert opinion and fuzzy AHP 

3.1.1 Average results before applying the fuzzy AHP 

From the expert survey responses, the normalized weights (up to 100) assigned to each of the 12 variables 

that make up the global index by each of the 28 experts interviewed were computed. And, using the normalized 

weights it is possible to calculate what is called "expert weights" by Al Fozaie and Wahid (2022), that is, the 

weighting that would arise from averaging the experts' responses. With these first weights, it is possible to 

carry out a first validation exercise of the weights assigned with expert criteria to the first version of the index 

in Navas-Sánchez et al. (2023), called "Index weights" (Figure 4).  

 

 

Figure 4. Expert weights and original weights of the Global Index (Index weights) by variable, sub-dimension 
and dimension 

For half of the variables, the average weights from the experts' responses are similar to the "Index weights," 

with differences between the two of less than two percentage points. The most marked discrepancy between 

both sets of weights is observed for the variable "Similarity in construction techniques" of the dimension 

"Suitability for the local system." Indeed, Navas-Sánchez et al. (2023) considered a very relevant variable by 

assigning a weight of 20, while, on average, experts have assigned similar weights to the two variables of this 

dimension. Another dimension in which there is a significant discrepancy between both sets of weights refers 

to the fragility curve, mainly due to the greater weight assigned by the experts to the variable referring to the 

DS threshold compared to the "index weight." On the other hand, the final weights of the subdimensions 

referring to the capacity curve and the quality of the study are very similar. However, given the high degree of 
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uncertainty and variability that arises from the different responses of the experts, it is crucial to implement the 

FAHP method to obtain more robust conclusions regarding the appropriateness of the index weights and the 

possible adjustments that would be advisable to introduce. 

3.1.2. Implementation of the fuzzy AHP 

The application of the FAHP requires first to calculate the ranking of the variables according to the expert 

weight previously computed, and the rank is then transformed into percentiles. Next, each variable is assigned 

the corresponding fuzzy value according to the percentile in which it was classified following the equivalence 

between percentiles and fuzzy values in Table 1. Table 3 shows these results and, in addition to the triangular 

fuzzy scale, indicates for each variable the intermediate scale based on the fuzzy number and the distance 

the variable is from the ideal scale, i.e., where the variables are “absolutely important.” The two variables with 

the highest weights and fuzzy scale are, on the one hand, the one related to building type and sample size of 

buildings used to construct the capacity and fragility curves and, on the other hand, the variable that attempts 

to capture the similarity in the construction techniques of the typology for which the curve was derived and the 

typology for which it is intended to be used. Next in importance is the intensity measure of the fragility curve 

evaluated and then, classified with a similar fuzzy scale, the type of analysis, the EDP and the similarity in the 

intensity measurements. 

 

Table 3. Variables of Global Index according to the triangular fuzzy scale of relative importance  

Variable  Weight Rank  Percentile F-scale I-scale  STI 
scale  

Building type and sample size 9.1 1 100 (9, 9, 9) 9 0 

Similarity in construction techniques  9.1 2 90 (9, 9, 9) 9 0 
Intensity measure 9.0 3 80 (6, 7, 8) 7 1 
Type of analysis 8.8 4 60 (4, 5, 6) 5 2 
EDP 8.8 4 60 (4, 5, 6) 5 2 
IM similarity  8.8 6 60 (4, 5, 6) 5 2 
DS thresholds 8.7 7 50 (4, 5, 6) 5 2 
Credibility  8.5 8 30 (2, 3, 4) 3 3 
Source of uncertainty considered 8.5 8 30 (2, 3, 4) 3 3 
Method 8.0 10 20 (1, 1, 1) 1 4 
Age of function 6.6 11 10 (1, 1, 1) 1 4 
Popularity  6.1 12 10 (1, 1, 1) 1 4 

 

The next step to obtain the fuzzy weights of each variable is to build the fuzzy pairwise comparison matrix 

shown in Table 4. For instance, the results from the expert survey indicate that the variable "Type of analysis" 

is "equally important" than "EDP," "DS thresholds," and "IM similarity," hence the fuzzy value observed in the 

cells corresponding to the comparison between the first variable and each of the remaining ones is equal to 

(1, 1, 1). Likewise, the variable "Type of analysis" is "fairly important" than the variable "Method," "Age of 

function," and "Popularity", so the fuzzy value in the FPCM is (4, 5, 6). On the other hand, the variables 

"Building type and sample" and "Similarity in construction techniques" are "fairly important" than "Type of 

analysis," with a fuzzy value in the corresponding celds of the FPCM equal to (¼, ⅕, ⅙). And "intensity 

measure" is "weakly important" than the first variable of the FPCM.  

Once the FPCM is calculated, it is possible to apply Buckley (1985)’s geomean method to calculate the fuzzy 

weights. The result of this computation is shown in Table 5 along with the defuzzified weights, the “Expert 

weights”, the “Index weights”, and the “interval weights”. As observed, the two variables "Building type" and 

sample size" and "Similarity in construction techniques" that are classified first in the ranking and are located 

in the first percentiles of Table 3 present the highest weights. This result contrasts with that arising from 

calculating a simple average of the experts' normalized responses. For this, it would be more convenient to 

consider the interval weights assigned to the Global Index variables that emerge from the midpoint between 

the defuzzified weights and the "Expert weights." 
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Table 4. Fuzzy pairwise comparison matrix  

 

 

Table 5. Different weights by variable of the Global Index  
Variables  Fuzzy 

weight 1 
Fuzzy 

weight 2 
Fuzzy 

weight 3 
Defuzzified 

weight 
Expert 

weights 
Interval 
weights 

Index 
weights  

Capacity curves dimension 

Type of analysis 7.0% 6.8% 6.7% 6.8% 8.8% 7.8% 8.0% 
EDP 7.0% 6.8% 6.7% 6.8% 8.8% 7.8% 2.0% 
Method 2.0% 1.6% 1.4% 1.6% 8.0% 4.8% 15.0% 
Subtotal  15.9% 15.2% 14.7% 15.3% 25.6% 20.4% 25.0% 

Fragility curves dimension 
Intensity measure 13.0% 13.4% 13.8% 13.4% 9.0% 11.2% 10.0% 
DS thresholds 7.0% 6.8% 6.7% 6.8% 8.7% 7.8% 2.0% 
Source of uncert. 

considered 
3.7% 3.2% 2.9% 3.3% 8.5% 5.9% 7.0% 

Age of function 2.0% 1.6% 1.4% 1.6% 6.6% 4.1% 6.0% 
Subtotal  25.5% 25.1% 24.8% 25.1% 32.9% 29.0% 25.0% 

Quality dimension 
Popularity  2.0% 1.6% 1.4% 1.6% 6.1% 3.9% 3.0% 
Credibility  3.7% 3.2% 2.9% 3.3% 8.5% 5.9% 4.0% 
Building type and 
sample size 

23.0% 24.0% 24.8% 23.9% 9.1% 16.5% 18.0% 

Subtotal  28.6% 28.8% 29.1% 28.8% 23.7% 26.3% 25.0% 
Suitability for the local system dimension 

Similarity in const. 
techniques  

23.0% 24.0% 24.8% 23.9% 9.1% 16.5% 20.0% 

IM similarity  7.0% 6.8% 6.7% 6.8% 8.8% 7.8% 5.0% 
Subtotal  30.0% 30.8% 31.4% 30.7% 17.8% 24.3% 25.0% 
Total  100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 

3.2. Application to the most prevalent typologies in Central America 

This section presents the results from applying the new, improved scores obtained for the global index from 

the expert weights and Fuzzy AHP method for some of the most prevalent typologies in Central America. The 

identification of the most common building classes in Central America was performed by Calderón et al. (2022) 

using existing studies and the judgment of local engineers. The GEM taxonomy (Silva et al., 2022) is used to 

characterize the typologies according to the attributes consider by Calderón et al. (2022) – construction 

material, lateral load resisting system (LLRS), ductility and stories. The objective of the exercise is twofold. 

Firstly, compare the classes in which a set of evaluated fragility curves is classified according to the original 

scores (the so-called weights index) and those that emerge from the new set of improved scores from the 

expert survey. This exercise allows the evaluation of the robustness of the classification initially proposed by 

Navas-Sánchez et al. (2023) to changes in the scores assigned to some index variables. On the other hand, 

Variables Type of 

analysis

EDP Method Intensity 

measure

DS 

thresholds

Source of 

uncertainty 

considered

Age of 

function

Popularity Credibility Building 

type and 

sample size

Similarity in 

constr. 

techniques 

IM 

similarity 

Type of analysis (1,1,1) (1,1,1) (4,5,6) (1/2,1/3,1/4) (1,1,1) (2,3,4) (4,5,6) (4,5,6) (2,3,4) (1/4,1/5,1/6) (1/4,1/5,1/6) (1,1,1)

EDP (1,1,1) (1,1,1) (1,1,1) (1/2,1/3,1/4) (1,1,1) (1/2,1/3,1/4) (4,5,6) (4,5,6) (2,3,4) (1/4,1/5,1/6) (1/4,1/5,1/6) (1,1,1)

Method (1/4,1/5,1/6) (1/4,1/5,1/6) (1,1,1) (1/6,1/7,1/8) (1/4,1/5,1/6) (2,3,4) (1,1,1) (1,1,1) (1/2,1/3,1/4) (1/9,1/9,1/9) (1/9,1/9,1/9) (1/4,1/5,1/6)

Intensity measure (2,3,4) (2,3,4) (6,7,8) (1,1,1) (2,3,4) (4,5,6) (6,7,8) (6,7,8) (4,5,6) (1/2,1/3,1/4) (1/2,1/3,1/4) (2,3,4)

DS thresholds (1,1,1) (1,1,1) (4,5,6) (1/2,1/3,1/4) (1,1,1) (2,3,4) (4,5,6) (4,5,6) (2,3,4) (1/4,1/5,1/6) (1/4,1/5,1/6) (1,1,1)

Source of uncertainty 

considered

(1/2,1/3,1/4) (1/2,1/3,1/4) (2,3,4) (1/4,1/5,1/6) (1/2,1/3,1/4) (1,1,1) (2,3,4) (2,3,4) (1,1,1) (1/6,1/7,1/8) (1/4,1/5,1/6) (1/2,1/3,1/4)

Age of function (1/4,1/5,1/6) (1/4,1/5,1/6) (1,1,1) (1/6,1/7,1/8) (1/4,1/5,1/6) (1/2,1/3,1/4) (1,1,1) (1,1,1) (1/2,1/3,1/4) (1/9,1/9,1/9) (1/9,1/9,1/9) (1/4,1/5,1/6)

Popularity (1/4,1/5,1/6) (1/4,1/5,1/6) (1,1,1) (1/6,1/7,1/8) (1/4,1/5,1/6) (1/2,1/3,1/4) (1,1,1) (1,1,1) (1/2,1/3,1/4) (1/9,1/9,1/9) (1/9,1/9,1/9) (1/4,1/5,1/6)

Credibility (1/2,1/3,1/4) (1/2,1/3,1/4) (2,3,4) (1/4,1/5,1/6) (1/2,1/3,1/4) (1,1,1) (2,3,4) (2,3,4) (1,1,1) (1/6,1/7,1/8) (1/6,1/7,1/8) (1/2,1/3,1/4)

Building type and 

sample size

(4,5,6) (4,5,6) (9,9,9) (2,3,4) (4,5,6) (6,7,8) (9,9,9) (9,9,9) (6,7,8) (1,1,1) (1,1,1) (4,5,6)

Similarity in 

construction techniques

(4,5,6) (4,5,6) (9,9,9) (2,3,4) (4,5,6) (6,7,8) (9,9,9) (9,9,9) (6,7,8) (1,1,1) (1,1,1) (4,5,6)

IM similarity (1,1,1) (1,1,1) (4,5,6) (1/2,1/3,1/4) (1,1,1) (2,3,4) (4,5,6) (4,5,6) (2,3,4) (1/4,1/5,1/6) (1/4,1/5,1/6) (1,1,1)
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it seeks to build a database with the most appropriate FCs for the different typologies of Central America, 

selected from an extensive search of fragility curves currently available in the literature. 

Figure 5 presents, in the first bar, the scores of the sub-dimensions and dimensions of the multidimensional 

index obtained with the new Interval weights for the FCs selected from the set of curves available for some of 

the most prominent typologies in Central America. The third and fourth bars for each typology show the final 

index score according to the original weights by Navas-Sánchez et al. (2023) and the final index score 

according to the new interval weights for each of the selected FCs. The typologies included in Figure 5 are: (i) 

Reinforced masonry with wall LLRS, low ductility and 1 to 3 stories (MR\LWAL+DUH\HBET:3,1), (ii) Confined 

masonry with wall LLRS, high ductility and 1 to 3 stories (MCF\LWAL+DUH\HBET:3,1), (iii) Reinforced 

concrete with bare frame LRRS, low ductility and 2 stories  (CR\LFM+DNO\HEX: 2), (iv) Reinforced concrete 

with bare frame LRRS, high ductility and 3 to 4 stories (CR\LFM+DUH\HBET:4,3), (v) Reinforced concrete with 

wall and frame, dual LLRS, high ductility and 6 to 12 stories (CR\LDUAL+DUH\HBET:12,6) and (vi) Wood and 

earth with panels LLRS, low ductility and 1 story (W+WWD\LWAL+DNO\HEX:1). The curves selected for each 

of them are the following: (i) FC1: MR/LWAL+DUC/HEX:1 by Calderón and Silva (2019), (ii) FC2: 

MCF/LWAL+DUC/HEX:1 by Villar-Vega (2017), (iii) CR\LFM+DNO\HEX:2 by Martins and Silva (2020), (iv) 

CR\LFM+DUC\HEX:3 by Martins and Silva (2020), (v) CR+CIP/LDUAL/HBET:11,6 by Esquivel (2020) based 

on Calderón (2018) and (vi) W+WWD\LWAL+DNO\HEX:1 by Martins and Silva (2020). 

 

Figure 5. Scores of the selected fragility curves for some prominent typology of CA according to improved 

weights and original weights 

The results show that most of the selected and evaluated FCs remain in the same class in which they were 

classified with the original weights, while the rest change to an immediately higher class. These results suggest 

that the selection and classification method in six classes proposed by Navas-Sánchez et al. (2023) is relatively 

robust to changes in scores. The disaggregation of the final index into the scores corresponding to each sub-

dimension and dimension allows us to examine the variables in which the different CFs were better or worse 
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evaluated. Thus, for example, it is observed that the CF with the lowest score in the dimension corresponding 

to the adaptation to the local system is Villar-Vega (2017) since it is a curve developed for a similar typology 

but from South America and, therefore, with some construction characteristics that may differ from those of 

the Central American region. Another striking result is that the extensive search carried out for FCs for the 

most prominent typologies in Central America has not allowed us to identify curves that were suitable enough 

to end up being classified in the highest class (A), and even for some of the typologies the best available curve 

was classified in class C. The relatively low class of some FCs selected for some typologies reflects the need 

to continue developing specific capacity and fragility curves for the typologies of this region that allow for more 

appropriate vulnerability and seismic risk studies with a lower level of uncertainty. 

3. Conclusions and future lines of research 

This paper aims to calibrate and validate the accuracy of the scores given to the variables of a multidimensional 

index developed in a previous methodology (Navas-Sánchez et al., 2023) designed for evaluating and 

choosing FCs for seismic risk analysis. This calibration process relies on surveying worldwide seismic 

vulnerability experts specializing in seismic risk studies. Furthermore, the outcomes of this calibration, carried 

out by applying the fuzzy AHP method, are integrated into the "select.FC" methodology. Additionally, an 

extensive database of FCs for some of the most prominent typologies for Central America, with their 

corresponding parameters, complete with their evaluation and classification according to the "select.FC" 

methodology, is built to facilitate the selection of the most suitable FC for a specific region to researchers or 

policymakers. 

The results obtained from the expert survey and the implementation of the FAHP show some discrepancies in 

the scores assigned to certain variables by Navas-Sánchez et al. (2023) in their original "select.FC" 

methodology. The most significant differences in the weightings are observed in the variable referring to the 

method to derive the capacity curve, the definition of damage thresholds, the EDP, and the similarity in 

construction techniques. However, beyond these discrepancies in the aggregate, these discrepancies 

disappear. Therefore, the scores assigned to the two dimensions of the global index by Navas-Sánchez et al. 

(2023) and those that emerge with the FAHP from the expert survey are similar. Likewise, applying the new 

Interval weights to select the most suitable FCs for the most prominent typologies in Central America shows 

few changes in the final classes in which these curves are classified. Therefore, the "select.FC" method and 

its proposed classification of FCs into six categories based on the score obtained in the final multidimensional 

index seem relatively robust to important changes in the weights of some of the variables. 

Future lines of research concerning the "select.FC" methodology consider several issues. First, evaluate the 

consistency of the experts' responses based on the additional questions included in the survey that were not 

used in this first exercise. This, in turn, will allow us to assess the robustness of the new scores obtained and 

recalibrate them if deemed appropriate. Secondly, the experts' responses and their level of expertise are 

heterogeneous. Therefore, it would also be advisable to adjust the experts' responses according to their 

degree of expertise, as suggested by Al Fozaie and Wahid (2022). In this way, greater weight could be given 

to the responses of experts with the highest levels of expertise in this area and obtain a final set of weights 

that reflects that adjustment. Another line of research consists of exploring ways to validate, against observed 

damage empirically, the curves selected as the best according to the “select.FC” methodology adjusted to the 

new weights that arise from the expert survey. Finally, an app is being developed that automates a CF's 

evaluation and classification process for a given typology. This new app will allow different interested users to 

have a comprehensive FC database and quickly select the most appropriate one for their vulnerability or 

seismic risk study with this improved methodology. 
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