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Abstract: Artificial intelligence (AI) is triggering major advances in construction engineering in the era of the 
generalization of Building Information Modelling (BIM). One of the main areas of AI development is the 
determination of building attributes from street view images. Building height is an essential factor for the 
assessment of structural vulnerability that is often missing, although sometimes available in cadastral 
databases. The goal of this research is to improve the automation of the collection of building attributes for 
seismic exposure assessment, for future applications in Central American cities. This work presents the 
framework and the development of machine learning techniques for urban image analysis and an application 
to the estimation of building heights. In this study, building heights were calculated from street-view imagery 
based on a semantic segmentation machine learning model. The model has a fully convolutional architecture 
and is based on the HRNet encoder and ResNexts depth separable convolutions, achieving fast runtime and 
state-of-the-art results on standard semantic segmentation tasks. The model was built from scratch and trained 
using the Julia programming language, the Flux library and the Cesvima Magerit supercomputer. It was 
possible to estimate the average height of the buildings in pilot images with a maximum error of 3 meters, 
under conditions that are versatile, and which allow for easy matching without the need for point clouds or any 
kind of image depth estimation. The image segmentation results are promising, achieving a high performance 
in the Citiscapes fine val set. The proposed method works without the need for extra parameters, allowing for 
the use of images from the Internet or images captured by mobile phones. However, the model still needs 
improvements in order to function adequately for non-European cities due to the lack of suitable datasets. 
Further research alternatives are commented, as well as the difficulties of obtaining valuable training data to 
apply these models in countries with no training datasets and different urbanism conditions. This line of 
research contributes to the characterization of buildings and the estimation of attributes essential for the 
assessment of seismic risk using automatically processed street view imagery.  

1. Introduction 
The construction industry's ongoing digital transformation holds the promise of introducing groundbreaking 
technologies and tools that can usher in novel business models, materials, and solutions, ultimately benefiting 
the entire industry value chain (European Construction Sector Observatory, 2021). Within the realm of digital 
technologies in construction, artificial intelligence finds its place in the category of data information and analysis 
(Baldini, G. et al., 2019). The integration of artificial intelligence into construction practices has thus far been 
constrained primarily to pilot projects, with a primary focus on enhancing structural analysis, design, and 
optimization. These efforts have yielded promising results, particularly in the deployment of artificial neural 
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networks for tasks like structural damage assessment (e.g., post-earthquake damage detection) and structural 
health monitoring (e.g., identifying damage and nonlinearities in wind turbine blades through pattern 
recognition techniques). 

Over recent decades, both industry managers and researchers have grappled with the formidable challenge 
of devising tools for evaluating the seismic vulnerability of existing building inventories, with the overarching 
goal of formulating dependable risk mitigation strategies. Various large-scale methodologies have been put 
forth to identify the most vulnerable segments within building stocks, following established protocols (Baggio 
et al., 2007; Brzev et al., 2013). Notably, urban image analysis has emerged as a pivotal approach for 
estimating the seismic exposure of buildings—a critical step in the calculation of their seismic vulnerability. 
Consequently, there is a clear imperative for the development of advanced automated tools capable of rapidly 
assessing the vulnerability of existing structures based on visual data, exemplified by the innovative VULMA 
tool designed for assessing the vulnerability of individual buildings and conducting comprehensive seismic risk 
assessments (Ruggieri et al., 2021). This avenue of research underscores the importance of creating 
dedicated training datasets, as proposed by Cardellicchio et al. (Cardellicchio et al., 2022). 

The assessment of seismic exposure hinges on the meticulous characterization of structural attributes at 
varying levels of granularity to categorize each building's exposure class (Esquivel-Salas et al., 2022), a 
framework established by the Global Earthquake Model (GEM) foundation (Brzev et al., 2013). Previous 
investigations have elucidated that one of the most influential attributes for seismic exposure classification is 
a building's height or the number of floors (Esquivel-Salas et al., 2022; Rodríguez-Saiz et al., 2022). 
Recognizing the indispensability of this attribute, an estimation of building height with a maximum absolute 
error of one floor suffices. To fulfill this need, automated machine learning models are indispensable, especially 
in cities where pertinent data is scarce, as is the case in the capitals of Central American nations, known for 
their susceptibility to significant seismic hazards and high levels of physical and social vulnerability (Benito et 
al., 2012). 

In many developing cities, street view images are abundantly available and can be obtained cost-effectively. 
Consequently, there exists a pressing demand for the development of models adept at extracting building 
heights from single-view images. Such models would enable researchers to obtain this pivotal parameter in 
developing urban centres using readily accessible internet imagery or smartphone-captured photos, facilitating 
the creation of indispensable databases for the evaluation of seismic exposure in urban environments. 

The principal objective of this research endeavour is to craft cost-effective methodologies for collecting building 
height data, with a specific focus on seismic risk assessment in Central American cities situated in developing 
nations. This study makes a substantial contribution to the field by harnessing street view images processed 
through a diverse array of convolutional neural networks to deliver precise estimates of key seismic exposure 
attributes, capitalizing on freely available visual data. This approach can be seamlessly applied to monitor 
extensive urban regions in developing countries. 

Furthermore, this research innovatively repurposes technology initially designed for autonomous vehicle 
navigation to the realm of building data collection and automated building surveys. It introduces a novel model 
that combines RestNext and HRNet, accompanied by a method for estimating building heights through 
semantic segmentation and a single street view image. 

2. Building height in the evaluation of seismic exposure 
Research into the seismic vulnerability of buildings, involving the use of imagery to extract fundamental 
parameters like height and facade material, is experiencing global growth (Esquivel-Salas et al., 2022). 
Traditional surveys have conventionally relied on manual visual inspections, a process known for its time-
consuming and costly nature. There's a current trend shifting towards automating these procedures, 
exemplified by the recent VULMA model, which employs a machine learning model for categorical 
classification to automate surveys (Cardellicchio et al., 2023). Previous experiences involved capturing images 
of individual building facades and applying the necessary labels through a classifier model. However, in real-
world scenarios using street view images, multiple buildings and additional elements such as streets are 
present, rendering the classifier model ineffective, as it cannot isolate the specific building of interest. 
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The INSPIRE scheme (INSPIRE, 2013) defines a building as a permanent structure, both above and below 
ground, intended for accommodating people, animals, goods, services, or production. Within this definition, 
one or multiple BuildingParts are identified, each denoting a distinct area within a cadastral parcel with 
consistent volume, either above or below ground. BuildingPart elements encompass attributes related to 
height, including the number of above-ground floors, height below ground level in meters, and the count of 
below-ground floors (INSPIRE, 2013). 

While building heights are typically accessible through INSPIRE in Europe, new methodologies have been 
developed to automatically estimate building heights, especially to facilitate data collection for urban cadastres 
in cities lacking such information. Leveraging ESA's Sentinel 1 and 2 data series, particularly Synthetic 
Aperture Radar (SAR) data (Drusch et al., 2012; Frantz et al., 2021), enabled the automated extraction of 
building height data on a large scale (Frantz et al., 2021). This approach yielded an error rate of under 5 meters 
for average-height buildings but exhibited larger errors for taller structures. Further enhancements in satellite 
techniques involved multi-view satellite imagery (Cao and Huang, 2021), achieving an error rate of 
approximately 2 meters. Aerial imagery (Xiao, Gerke, and Vosselman, 2012) and Aerial Laser Imaging 
Detection and Ranging (LIDAR) have been employed to measure building heights (Bonczak and Kontokosta, 
2019), but these methods are costly and require manual labour, raising questions about their suitability for 
large-scale data collection. More recently, methods utilizing street-view imagery, captured from a driver's 
perspective, have emerged. These approaches employ machine learning techniques to segment images and 
identify the top corners of buildings. Horizontal distances from the camera to the building are then calculated 
using camera positions and databases like OpenStreetMap, which contain x and y coordinates of building 
corners (Ala, 2020) and rooflines (Zhao, Qi, and Zhang, 2019). By considering parameters such as camera 
height, estimation of three vanishing points, and detecting vertical lines of buildings through semantic 
segmentation, height can be computed based on image perspective (Yan and Huang, 2022), yielding a relative 
error of 5%. Alternatively, height can be determined using trigonometric calculations. Spherical images allow 
for more complex geometric methods that do not require 2D external corner coordinates (Díaz and Arguello, 
2016). 

In the realm of computer vision, significant strides have been made in recent years in image classification 
tasks through the development of new machine learning models such as the vision transformer (Dosovitskiy 
et al., 2020) or its semantic segmentation version (Strudel et al., 2021). These models, characterized by their 
extensive parameterization, are typically developed by large companies and pose challenges in terms of 
training. Conversely, simpler models have emerged for image classification, such as RestNexts (Xie et al., 
2016; Hitawala, 2018). Remarkable results in semantic segmentation have been achieved with HRNets (Wang 
et al., 2019), a model capable of processing images at multiple resolutions. Although computer vision is 
primarily employed in urban contexts for tasks related to autonomous vehicle navigation, especially using 
publicly available datasets like Cityscapes or Vistas (Cordts et al., 2016; Neuhold et al., 2017), its application 
in other domains such as building inspection or data collection has remained relatively underdeveloped. 

3. Methods: Artificial Intelligence Applied to Building Height Estimation 
3.1 Facade Detection: Semantic Segmentation Model 
The initial phase of any image-based data collection tool involves the identification of spatial and categorical 
attributes pertaining to specific objects within the input images. In our context, these input images consist of 
street view perspectives from a car driver's viewpoint, from which we extract spatial details regarding buildings, 
vehicles, road surfaces, and other objects. This task is executed using a machine learning model for semantic 
segmentation, which assigns a class to each pixel within the input image. 

We have developed a fully convolutional neural network that is constructed based on the HRNet encoder 
framework proposed by Wang et al. in 2019. This HRNet-based model is designed to preserve a high-
resolution representation of the input image throughout the entirety of the model's processing. To optimize 
runtime efficiency, the output labelled image possesses half the resolution of the input. 

In the HRNet encoder (Figure 1), the input image is split into two branches: one maintains half of the original 
resolution, while the other retains just one sixteenth of the original resolution. The second branch serves as a 
bottleneck, while the first branch acts as a high-resolution representation of the image. The process of reducing 
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image resolution occurs progressively through the encoder, with the second branch's resolution halved in each 
encoder layer. Both branches are interconnected through cross-convolutions (Figure 2). 

 
Figure 1. Model encoder. (Ureña-Pliego et al., 2023) 

 
Figure 2. Encoder layer. The first cross-convolution is not applied, and mean pool is applied on branch 1 in 

the encoder layer 1. × denotes array dimension and * denotes multiplication. (Ureña-Pliego et al., 2023) 

Within the encoder architecture, we employ ResNext convolutions (Figure 2), following which an atrous spatial 
pyramid convolution (Figure 4) is implemented. ResNext represents a recently introduced model that utilizes 
depth separable convolutions (Chollet, 2016) with an inverse bottleneck design. Remarkably, it achieves top-
tier results while requiring fewer training parameters. DenseNet layers, on the other hand, are layers that 
augment the feature dimension by repeatedly concatenating convolution outputs to the input, a process that 
is iterated multiple times (Huang et al., 2016). 

 

 
Figure 3. Basic layers of the model. × denotes array dimension and * denotes multiplication. (Ureña-Pliego 

et al., 2023) 
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Within the decoder architecture (Figure 5), we employ straightforward depthwise convolutions, without the 
inclusion of a bottleneck structure. Following this, an attention mechanism is applied (Figure 3), where skip 
connections originating from layers 5, 4, and 3 are integrated with decoder layers 1, 2, and 3, respectively. 
This integration is achieved by concatenating along the feature dimension of each branch. 

In each decoder layer, the second branch undergoes upsampling until it matches the size of the first branch in 
the final decoder layer. Just before both branches are fused together, an attention mechanism is utilized. This 
attention mechanism assigns a level of attention to each pixel, determining its importance and serving as a 
criterion for merging two images into a unified output. 

 

 
Figure 4. Atrous spatial pyramid layer. (Ureña-Pliego et al., 2023) 

The model is programmed in the Julia programming language (Bezanson et al., 2014) using Zygote (Innes et 
al., 2019) and Flux (Innes et al., 2018) libraries and cross-entropy (Zhang and Sabuncu, 2018) as the loss 
function for classification tasks. Optimisation is done with supervised learning using the ADAM 
optimizer (Kingma and Ba, 2014). Training is performed with a A100 Nvidia GPU on a Magerit supercomputer 
at Cesvima UPM. For model parameter initialization, a glorot uniform distribution (Glorot and Bengio, 2010) 
is used. 

 
Figure 5. Model decoder. × denotes array dimension and * denotes multiplication. (Ureña-Pliego et al., 2023) 

3.2 Extracting Spatial Information 
This model offers 2D relative spatial information derived from the image. However, our goal is to acquire 3D 
real-world spatial information, enabling direct measurement of building height. This necessitates the 
generation of a point cloud from the input image. There exist machine learning models designed to provide 
pixelwise depth estimation from single-view images. With access to the depthmap of the image and camera 
data such as the focal length, we could assign distance and direction to each pixel in the image, thus forming 
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the point cloud. Regrettably, the precision of single-view depth estimation models developed thus far (Li et al., 
2022) falls short of the requirements for this task. In benchmarking tests like KITTI, even the best-performing 
models exhibit an error rate of approximately 8%. To put this into perspective, it translates to an 8-meter error 
in depth estimation for a building situated 100 meters away from the camera. 

We conducted experiments using depth models trained on KITTI data, but the resulting point cloud proved to 
be inaccurate. Since generating a point cloud from single-view images proved unfeasible, we have pursued 
two alternative approaches. Firstly, a point cloud can be constructed through photogrammetry using multiple 
images or a video source (Müller et al., 2022). However, this approach comes with a significant computational 
burden and reduces the versatility of our method, as obtaining multiple images with the necessary 
characteristics from a video can be challenging. The second option is to devise a method that doesn't rely on 
a point cloud, which we have found to be the most practical approach. 

3.3 Height Comparison Method 
In this section, we derive building height estimates using 2D information extracted from the image. Within a 
given street scene, certain objects possess known heights, such as cars, people, or elements like windows 
and doors on buildings. By comparing the size of a building with the size of a reference class, such as the 
aforementioned objects, we can deduce the building's height. Ideally, windows and doors would serve as our 
preferred reference class; however, regrettably, these labels are absent from the training dataset. To utilize 
windows and doors as a reference class, the creation of our own semantic segmentation dataset would be 
necessary, a task that exceeds the scope of this research. Consequently, we opt to use cars and people as 
the reference classes, although cars only serve as a reliable reference if they are parked in close proximity to 
the building under measurement. 

To compute the local building height, we calculate the quotient for each column of pixels belonging to a building 
in the segmented image, dividing it by the pixels associated with one of the reference classes. This result is 
then multiplied by the height of the chosen reference class. The outcome of this computation is a vector with 
a length equivalent to the horizontal dimension of the image. 

It's crucial to note that the accuracy of this method hinges on the proximity of the reference object to the 
building. When the reference object is not adjacent to the building, it will appear larger in the image, rendering 
the measurement invalid. Such instances may arise in non-standard street geometries, like intersections, or 
when there are moving vehicles or pedestrians crossing the street. Additionally, reference objects with atypical 
sizes can also lead to inaccurate measurements. 

To mitigate the impact of invalid data, we calculate the mean and standard deviation of the local height vector. 
Data points that deviate significantly from the mean value are then removed from the vector. Invalid 
measurements often result in heights that are underestimated, as inappropriately chosen reference objects 
tend to appear larger in most cases. Consequently, positive deviations from the mean of the height vector are 
given less tolerance than negative deviations. 

In scenarios where multiple images and reference classes are employed, further statistical computations can 
be performed to enhance the accuracy of the height estimation. 

3.4 Model Training Datasets 
In the realm of semantic segmentation, the majority of street-view image datasets are primarily tailored for 
tasks related to autonomous driving. These datasets typically encompass classes like buildings, sky, and 
roads, all of which are relevant to our research. However, valuable classes such as windows, doors, building 
materials, and others are often absent from these datasets, as they hold no significance in the context of self-
driving vehicles. To initiate a broad but low-precision training phase, we leveraged three datasets: Vistas 
(Neuhold et al., 2017), GTA5 (Richter et al., 2016), and Cityscapes coarse (Cordts et al., 2016). 

The Vistas dataset boasts approximately 25,000 images from various countries around the world, making it 
unique in its inclusion of images from Central America. GTA5, on the other hand, comprises around 25,000 
images extracted from the GTA5 video game. Labels for this dataset were automatically generated from in-
game images depicting the city of Los Angeles, resulting in varying lighting conditions, including night scenes. 
Lastly, Cityscapes is a dataset composed of images from German cities, featuring approximately 18,000 
coarsely labelled images and 5,000 finely labelled images. We utilized the coarse dataset from Cityscapes for 
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our initial broad training, reserving the fine dataset for a subsequent refinement phase. This training approach 
allowed us to expose the model to a more diverse range of data, helping to mitigate issues often associated 
with real-world data. 

The model underwent an initial training phase with the 18,000 images from the Cityscapes coarse dataset, 
followed by the incorporation of 25,000 images from Vistas (with label adaptation to match the Cityscapes 
scheme), 25,000 images from GTA5, and finally, 5,000 images from the Cityscapes fine dataset. To augment 
the dataset, we applied techniques such as 10-degree rotations and horizontal flipping. 

4. Case Study: Extraction of Building Height in Cityscapes 
4.1 Results 
The semantic segmentation model achieved a notable IoU metric (intersection-over-union) of 86.13% on the 
Cityscapes fine validation set (Cordts et al., 2016). To elucidate these results, we present and discuss a case 
study utilizing a Cityscapes image. An image from the Cityscapes validation set underwent processing by the 
model, representing it as a (width × height × 3) matrix with values ranging between 0 and 1. This transformation 
yielded a (classes × width × height × 1) matrix with values between 0 and 1, signifying the model's likelihood 
assessment for each pixel belonging to a specific class. In this context, three classes are considered: sky, 
building, and car. 

To facilitate analysis, the vector is reshaped to dimensions (width × height × 1), effectively assigning an integer 
to represent the class with the highest probability for each pixel. Subsequently, the height vector is extracted 
(Figure 6) by comparing pixels within the building and car classes for each row, after excluding columns devoid 
of pixels belonging to the sky class. In this illustrative example, after refining the height vector, the building 
heights span from 3.5 to 6.5, with an average of around 5. This signifies that, on this particular street, the 
buildings are approximately 5 floors high. 

The car's height used for this purpose would be calibrated based on measurements from the city, 
encompassing buildings of known heights. It's important to note that this approach requires a consistent street 
alignment and an adequate portion of visible sky within the image. As street view images are both cost-effective 
and easily accessible, any erroneous measurements stemming from images with moving cars or non-uniform 
street alignments could be statistically filtered out. 

In practice, this method has the potential to yield average building heights on a street with a maximum error of 
3 meters, equivalent to approximately one floor, and a relative error of 9% in cities characterized by uniform 
streets. 

4.2 Discussion 
The results of the image segmentation exhibit promise, demonstrating exceptional performance in the 
Cityscapes fine validation set (Cordts et al., 2016). This paves the way for further advancements in automating 
the detection of buildings and their constituent parts and features. 

In the context of the case study, the outcomes are gratifying for estimating the "height" attribute associated 
with building exposure, denoting the elevation above ground in terms of storeys (e.g., a building's height 
equivalent to three storeys). Typically, height classes are defined within a range of storeys or floors, such as 
1–3, 4–7, and > 8 (FEMA, 2001; Brzev et al., 2013). Consequently, the determination of seismic exposure 
categories can be carried out with building height estimates precise to a single floor. The proposed method 
effectively meets this requirement, exhibiting a maximum error of approximately one floor. 

These results are comparable with those of other methods, such as those using satellite imagery with absolute 
errors of around 2–5 m, which usually require SAR data (Frantz et al., 2021) or multi-view imagery (Xiao, 
Gerke and Vosselman, 2012; Cao and Huang, 2021) and are therefore more complicated. 
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Building height vector (Number of 
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Figure 6. Example of the method with an image from the Cityscapes test set. (Cordts et al., 2016) 

These results align favourably with other methodologies, including those utilizing satellite imagery, which often 
yield absolute errors in the range of 2–5 meters, typically necessitating SAR data (Frantz et al., 2021) or multi-
view imagery (Xiao, Gerke, and Vosselman, 2012; Cao and Huang, 2021), thereby introducing increased 
complexity. 

Street view methods incorporating machine learning can achieve a lower relative error of 5% but necessitate 
additional data such as building footprints (Zhao, Qi, and Zhang, 2019; Ala, 2020) or camera height information 
(Yan and Huang, 2022). 

Notably, the proposed method operates without the need for supplementary parameters, enabling the 
utilization of images from the internet or images captured via mobile phones for various purposes, provided 
that potential challenges associated with dataset diversity can be addressed effectively. 

5. Conclusions 
Based on the findings of this study, it is evident that artificial intelligence holds significant promise for 
streamlining the extraction of pertinent building parameters. However, it is clear that there remains substantial 
progress to be made within the realm of computer vision. 

A critical challenge lies in the scarcity of high-quality datasets featuring urban street imagery, especially when 
considering images from developing countries. Furthermore, the existing datasets have primarily been tailored 
for the specific demands of self-driving car technology, largely overlooking the requirements of the construction 
sector. 

Encouragingly, the research demonstrates the ability to estimate average building heights within pilot images 
with only minor errors, operating within a versatile framework that simplifies matching without necessitating 
complex elements like point clouds or image depth estimation. The semantic segmentation model emerges as 
a standout performer, yielding impressive results while offering enhanced flexibility and speed compared to 
alternative models. It effectively tackles the issues of global information extraction deficiency and image detail 
loss. However, it is apparent that the model requires refinement to operate effectively in non-European urban 
environments, primarily due to the dearth of suitable datasets. 

Future research endeavours could focus on mitigating the scarcity of training data for the segmentation model 
through domain adaptation, potentially employing a model capable of transforming street images to align with 
the visual style of a German city. However, it is imperative that comprehensive datasets be generated for 
various regions across the globe. 

A promising avenue for future exploration involves the development of classifier models for estimating building 
heights. Classifier machine learning models represent a well-established field within artificial intelligence, and 
these models would assign categorical classes to denote the number of floors in each building. This information 
carries utmost importance for evaluating seismic exposure and computing building vulnerability, particularly in 
regions facing pressing challenges in this regard. 
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